Correlates of Physical Activity and Sedentary Behaviour in Thailand: a Systematic Review

INTRODUCTION
To develop effective interventions to increase physical activity (PA) and reduce sedentary behaviour (SB), we need to understand correlates of the behaviours. Given substantial differences between geographical areas in social, cultural, environmental, and economic factors, it is important to explore PA/SB correlates in specific countries [1]. PA and SB are influenced by many factors [2]. However, a comprehensive review of multi-level factors is lacking in low- and middle-income countries including Thailand [2-8].

AIMS
This study aimed to systematically review and summarise the available evidence on individual, social, environmental, and policy correlates of PA and SB in the Thai populations. We also aimed to identify the key gaps in the literature on PA and SB correlates in Thailand and provide recommendations for future research.

METHODS
The systematic review followed the PRISMA guidelines. The primary search was conducted from database inception to September 2016 using 10 databases. The secondary search was conducted using Google; Google Scholar; references of the studies selected in the primary search; and the websites of Thai health organizations.

RESULTS

<table>
<thead>
<tr>
<th>PA</th>
<th>Consistent correlates of higher PA</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-17 yrs</td>
<td>Younger age, Being a male, Higher self-efficacy, Lower perceived barriers, Greater friendship influences</td>
</tr>
<tr>
<td>18-59 yrs</td>
<td>Higher self-rated general health, Better mental health, Positive attitudes towards PA, Higher self-efficacy, Higher perceived benefits, Lower perceived barriers, More spare time, Better social support, Greater interpersonal influences, Greater family influences, Better information support</td>
</tr>
<tr>
<td>60+ yrs</td>
<td>Higher self-rated general health, Better mental health, Positive attitudes towards PA, Higher self-efficacy, Higher perceived benefits, Lower perceived barriers, Higher outcome expectancies, Greater knowledge of PA, Better physical and functional fitness</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SB</th>
<th>Consistent correlates of higher SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

CONCLUSIONS
To increase PA in Thailand, public health interventions should focus on helping individuals to: improve self-efficacy; circumvent perceived barriers for PA; improve general and mental health; find enough spare time to engage in PA; improve physical fitness; gain knowledge about PA; and receive adequate social support for PA participation. The body of literature on correlates of SB in Thailand is limited. Nevertheless, evidence suggests that interventions for reducing SB in Thai adults should primarily target obese individuals, as they seem to be at a greater risk of high SB. More Thai studies are needed on PA correlates, particularly among children/adolescents and with more focus on environment- and policy-related factors. Much greater commitment is needed to investigate correlates of SB in Thailand, particularly among older adults. Researchers are also encouraged to conduct longitudinal studies and use device-based measures of PA and SB if feasible.

References